[image: ]



Technical Architecture Document

Databricks Lakehouse Architecture Blueprint




Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice


Executive Summary
The Databricks Lakehouse architecture represents a paradigm shift in data management, combining the best attributes of data lakes and data warehouses into a unified platform. This comprehensive blueprint provides enterprise architects and data engineers with the foundational knowledge required to design, implement, and optimize Lakehouse architectures on the Databricks platform.
The Lakehouse architecture addresses the fundamental limitations of traditional two-tier architectures where organizations maintained separate data lakes for raw data storage and data warehouses for business intelligence. This dual-system approach created data silos, increased complexity, and resulted in significant data duplication and synchronization challenges.
By implementing a Lakehouse architecture, organizations can achieve unified data management with a single source of truth for all data workloads. The architecture supports diverse analytics use cases including business intelligence, machine learning, real-time streaming, and advanced analytics on the same data platform.
This document provides detailed guidance on architectural patterns, implementation strategies, and best practices for building robust Lakehouse solutions using Databricks.
1. Introduction to Lakehouse Architecture
1.1 Evolution of Data Architectures
The evolution of enterprise data architectures has progressed through several distinct generations, each addressing the limitations of its predecessor while introducing new capabilities to meet growing business demands.
First Generation: Data Warehouses (1990s-2000s)
Traditional data warehouses emerged to address the need for structured analytical processing. These systems excelled at providing reliable, consistent data for business intelligence and reporting. Key characteristics included:
Structured schema-on-write approach
ACID transaction guarantees
Optimized for SQL-based analytics
High data quality through ETL processes
Expensive storage and compute costs
Limited support for unstructured data
Rigid schema evolution capabilities
Second Generation: Data Lakes (2010s)
Data lakes emerged with the rise of big data and the need to store diverse data types at scale. Apache Hadoop and cloud object storage enabled organizations to store massive volumes of raw data cost-effectively:
Schema-on-read flexibility
Support for structured, semi-structured, and unstructured data
Horizontal scalability at low cost
Native support for machine learning workloads
Challenges with data quality and governance
Complex data management and access patterns
Limited ACID transaction support
Third Generation: Lakehouse Architecture (2020s)
The Lakehouse architecture combines the strengths of both approaches:
	Capability
	Data Warehouse
	Data Lake
	Lakehouse

	ACID Transactions
	Yes
	No
	Yes

	Schema Enforcement
	Yes
	No
	Yes

	BI Support
	Excellent
	Limited
	Excellent

	ML Support
	Limited
	Excellent
	Excellent

	Streaming Support
	Limited
	Good
	Excellent

	Cost Efficiency
	Low
	High
	High

	Data Governance
	Strong
	Weak
	Strong

	Open Formats
	No
	Yes
	Yes



1.2 Core Principles of Lakehouse
The Lakehouse architecture is built on several foundational principles that enable its unique capabilities:
Unified Data Platform
A single platform that supports all data workloads eliminates the need for multiple specialized systems. Data engineers, data scientists, analysts, and business users can all work from the same data without complex ETL pipelines between systems.
Open Data Formats
The Lakehouse stores data in open formats like Delta Lake, Apache Parquet, and Apache Iceberg. This approach prevents vendor lock-in and enables interoperability with a broad ecosystem of tools and frameworks.
Direct Access to Source Data
Analytics and machine learning workloads access data directly from cloud object storage, eliminating the need to move data into specialized systems. This reduces complexity, cost, and data staleness.
Separation of Storage and Compute
Cloud object storage provides infinitely scalable, cost-effective storage while compute resources can be independently scaled based on workload requirements.
ACID Transaction Support
Delta Lake provides ACID transactions on top of cloud object storage, enabling reliable data management, concurrent operations, and time travel capabilities.
2. Delta Lake Architecture
2.1 Delta Lake Fundamentals
Delta Lake is the storage layer that enables Lakehouse architecture by bringing reliability and performance to data lakes. It provides ACID transactions, scalable metadata handling, and unified streaming and batch data processing.
Transaction Log Architecture
The Delta Lake transaction log (_delta_log) is the central component that enables ACID compliance. Every operation on a Delta table is recorded in the transaction log as an ordered, atomic commit.
delta_table/
├── _delta_log/
│   ├── 00000000000000000000.json
│   ├── 00000000000000000001.json
│   ├── 00000000000000000002.json
│   └── 00000000000000000010.checkpoint.parquet
├── part-00000-xxx.parquet
├── part-00001-xxx.parquet
└── part-00002-xxx.parquet
Each JSON file in the transaction log contains a series of actions:
Add: Records new data files added to the table
Remove: Marks files for deletion (tombstones)
Metadata: Table schema and configuration changes
Protocol: Delta Lake version requirements
CommitInfo: Audit information about the operation
Checkpoint Files
To optimize read performance, Delta Lake periodically creates checkpoint files that consolidate the state of the transaction log. By default, checkpoints are created every 10 commits.
# Configure checkpoint interval
spark.conf.set("spark.databricks.delta.properties.defaults.checkpointInterval", "10")

# Create Delta table with custom checkpoint interval
spark.sql("""
    CREATE TABLE events
    USING DELTA
    TBLPROPERTIES (delta.checkpointInterval = 5)
""")
2.2 ACID Transaction Guarantees
Delta Lake provides full ACID transaction support on cloud object storage:
Atomicity
Operations either complete entirely or have no effect. If a write operation fails mid-stream, no partial data is visible to readers.
# Atomic write operation
df.write.format("delta").mode("append").save("/data/events")

# Multi-statement transaction
from delta.tables import DeltaTable

deltaTable = DeltaTable.forPath(spark, "/data/events")

# All operations in this block are atomic
deltaTable.update(
    condition = "eventType = 'click'",
    set = { "processed": "true" }
)
Consistency
All data written to Delta tables must conform to the defined schema. Schema enforcement prevents corrupt or incompatible data from being written.
# Schema enforcement in action
# This will fail if new_df schema doesn't match existing table
new_df.write.format("delta").mode("append").save("/data/events")

# Enable schema evolution if needed
new_df.write.format("delta") \
    .option("mergeSchema", "true") \
    .mode("append") \
    .save("/data/events")
Isolation
Delta Lake provides serializable isolation through optimistic concurrency control. Concurrent operations are validated at commit time to ensure data integrity.
# Concurrent operations are handled automatically
# Writer 1
df1.write.format("delta").mode("append").save("/data/events")

# Writer 2 (concurrent)
df2.write.format("delta").mode("append").save("/data/events")

# Both writes succeed if no conflicts detected
Durability
Once a transaction is committed, it is persisted to cloud storage and survives system failures. The transaction log ensures committed data is never lost.
2.3 Time Travel and Data Versioning
Delta Lake maintains a complete history of all changes to a table, enabling time travel queries and data versioning.
Querying Historical Data
# Query data as of a specific version
df = spark.read.format("delta") \
    .option("versionAsOf", 5) \
    .load("/data/events")

# Query data as of a specific timestamp
df = spark.read.format("delta") \
    .option("timestampAsOf", "2024-01-15 00:00:00") \
    .load("/data/events")

# Using SQL
spark.sql("SELECT * FROM events VERSION AS OF 5")
spark.sql("SELECT * FROM events TIMESTAMP AS OF '2024-01-15'")
Viewing Table History
from delta.tables import DeltaTable

deltaTable = DeltaTable.forPath(spark, "/data/events")
history = deltaTable.history()
history.show(truncate=False)
	version
	timestamp
	operation
	operationParameters

	10
	2024-01-15 14:30:00
	MERGE
	predicate: id = ...

	9
	2024-01-15 12:00:00
	WRITE
	mode: Append

	8
	2024-01-15 10:00:00
	DELETE
	predicate: date < ...



Restoring Previous Versions
# Restore to a specific version
deltaTable.restoreToVersion(5)

# Restore to a specific timestamp
deltaTable.restoreToTimestamp("2024-01-15 00:00:00")
2.4 Schema Evolution
Delta Lake supports schema evolution, allowing table schemas to change over time without requiring full table rewrites.
Adding New Columns
# Enable automatic schema evolution
spark.conf.set("spark.databricks.delta.schema.autoMerge.enabled", "true")

# Or specify at write time
df_with_new_columns.write.format("delta") \
    .option("mergeSchema", "true") \
    .mode("append") \
    .save("/data/events")
Supported Schema Changes
	Change Type
	Supported
	Notes

	Add columns
	Yes
	New columns added at end

	Rename columns
	Yes
	Using ALTER TABLE

	Change data types
	Limited
	Only compatible type changes

	Drop columns
	Yes
	Using ALTER TABLE

	Reorder columns
	Yes
	Using column mapping



Column Mapping
# Enable column mapping for flexible schema evolution
spark.sql("""
    ALTER TABLE events
    SET TBLPROPERTIES (
        'delta.minReaderVersion' = '2',
        'delta.minWriterVersion' = '5',
        'delta.columnMapping.mode' = 'name'
    )
""")

# Now you can rename and drop columns
spark.sql("ALTER TABLE events RENAME COLUMN old_name TO new_name")
spark.sql("ALTER TABLE events DROP COLUMN unused_column")
3. Medallion Architecture
3.1 Overview of Bronze-Silver-Gold Pattern
The medallion architecture organizes data into three layers based on data quality and transformation level. This pattern provides a clear framework for data refinement and enables different use cases at each layer.
Raw Data Sources → [Bronze] → [Silver] → [Gold] → Consumers
     │                │          │          │
     │                │          │          └── Dashboards, Reports
     │                │          └── ML Training, Ad-hoc Analysis
     │                └── Data Quality Checks, Audit
     └── Streaming, Batch Ingestion
3.2 Bronze Layer: Raw Data Ingestion
The Bronze layer contains raw, unprocessed data ingested from source systems. Data is preserved in its original form to maintain complete lineage and enable reprocessing.
Bronze Layer Characteristics
Raw data in original format
Append-only ingestion pattern
Full historical data retained
Metadata enrichment (ingestion timestamp, source, batch ID)
Schema may vary (schema-on-read)
Partitioned by ingestion date
Bronze Table Implementation
from pyspark.sql.functions import current_timestamp, lit, input_file_name

# Read raw data from source
raw_df = spark.read \
    .format("json") \
    .option("multiLine", "true") \
    .load("/landing/sales/*.json")

# Add ingestion metadata
bronze_df = raw_df \
    .withColumn("_ingestion_timestamp", current_timestamp()) \
    .withColumn("_source_file", input_file_name()) \
    .withColumn("_batch_id", lit(batch_id))

# Write to Bronze layer
bronze_df.write \
    .format("delta") \
    .mode("append") \
    .partitionBy("_ingestion_date") \
    .save("/bronze/sales")
Streaming Ingestion to Bronze
# Auto Loader for streaming ingestion
bronze_stream = spark.readStream \
    .format("cloudFiles") \
    .option("cloudFiles.format", "json") \
    .option("cloudFiles.schemaLocation", "/schema/sales") \
    .option("cloudFiles.inferColumnTypes", "true") \
    .load("/landing/sales/")

# Add metadata and write to Bronze
bronze_stream \
    .withColumn("_ingestion_timestamp", current_timestamp()) \
    .writeStream \
    .format("delta") \
    .option("checkpointLocation", "/checkpoints/bronze/sales") \
    .trigger(availableNow=True) \
    .start("/bronze/sales")
3.3 Silver Layer: Cleaned and Conformed Data
The Silver layer contains cleansed, validated, and conformed data. This layer applies data quality rules, standardizes formats, and joins related data from multiple sources.
Silver Layer Characteristics
Cleaned and validated data
Standardized schemas and formats
Deduplicated records
Null handling and default values
Conforming dimensions applied
Type casting and format standardization
Data quality metrics tracked
Silver Table Implementation
from pyspark.sql.functions import col, when, trim, upper, to_date

# Read from Bronze
bronze_df = spark.read.format("delta").load("/bronze/sales")

# Apply data quality transformations
silver_df = bronze_df \
    .filter(col("order_id").isNotNull()) \
    .filter(col("amount") > 0) \
    .withColumn("customer_name", trim(upper(col("customer_name")))) \
    .withColumn("order_date", to_date(col("order_date"), "yyyy-MM-dd")) \
    .withColumn("amount", col("amount").cast("decimal(18,2)")) \
    .withColumn("status",
        when(col("status").isNull(), "UNKNOWN")
        .otherwise(upper(trim(col("status"))))
    ) \
    .dropDuplicates(["order_id"])

# Write to Silver layer
silver_df.write \
    .format("delta") \
    .mode("overwrite") \
    .option("overwriteSchema", "true") \
    .partitionBy("order_date") \
    .save("/silver/sales")
Data Quality Validation
from pyspark.sql.functions import count, sum as _sum, when

# Define data quality checks
dq_results = silver_df.agg(
    count("*").alias("total_records"),
    _sum(when(col("order_id").isNull(), 1).otherwise(0)).alias("null_order_ids"),
    _sum(when(col("amount") <= 0, 1).otherwise(0)).alias("invalid_amounts"),
    _sum(when(col("customer_id").isNull(), 1).otherwise(0)).alias("null_customers")
)

# Log quality metrics
dq_results.write.format("delta").mode("append").save("/metrics/data_quality/sales")
3.4 Gold Layer: Business-Level Aggregates
The Gold layer contains business-level aggregations and curated data products optimized for specific use cases. This layer serves dashboards, reports, and machine learning applications.
Gold Layer Characteristics
Business-level aggregations
Denormalized for query performance
Use-case specific data products
Optimized for BI tools
Pre-computed metrics and KPIs
SLA-driven refresh schedules
Often smaller in volume than Silver
Gold Table Implementation
from pyspark.sql.functions import sum, avg, count, countDistinct, date_trunc

# Read from Silver
silver_sales = spark.read.format("delta").load("/silver/sales")
silver_customers = spark.read.format("delta").load("/silver/customers")

# Create Gold aggregate table
gold_sales_summary = silver_sales \
    .join(silver_customers, "customer_id") \
    .groupBy(
        date_trunc("month", col("order_date")).alias("month"),
        col("region"),
        col("product_category")
    ) \
    .agg(
        sum("amount").alias("total_revenue"),
        avg("amount").alias("avg_order_value"),
        count("order_id").alias("order_count"),
        countDistinct("customer_id").alias("unique_customers")
    )

# Write to Gold layer with optimization
gold_sales_summary.write \
    .format("delta") \
    .mode("overwrite") \
    .option("overwriteSchema", "true") \
    .save("/gold/sales_summary")

# Optimize for query performance
spark.sql("OPTIMIZE gold.sales_summary ZORDER BY (month, region)")
3.5 Layer Transition Patterns
Incremental Processing with Change Data Feed
# Enable Change Data Feed on Silver table
spark.sql("""
    ALTER TABLE silver.sales
    SET TBLPROPERTIES (delta.enableChangeDataFeed = true)
""")

# Read changes incrementally
changes_df = spark.read.format("delta") \
    .option("readChangeFeed", "true") \
    .option("startingVersion", last_processed_version) \
    .table("silver.sales")

# Process only changed records
insert_updates = changes_df.filter(col("_change_type").isin("insert", "update_postimage"))
deletes = changes_df.filter(col("_change_type") == "delete")

# Apply changes to Gold table
gold_table = DeltaTable.forName(spark, "gold.sales_summary")
gold_table.alias("target").merge(
    insert_updates.alias("source"),
    "target.id = source.id"
).whenMatchedUpdateAll().whenNotMatchedInsertAll().execute()
4. Data Ingestion Patterns
4.1 Batch Ingestion
Batch ingestion processes data in discrete, scheduled intervals. This pattern is suitable for data sources with periodic updates and use cases that don't require real-time data.
Pattern: Full Load
# Full table replacement
source_df = spark.read \
    .format("jdbc") \
    .option("url", jdbc_url) \
    .option("dbtable", "source_table") \
    .load()

source_df.write \
    .format("delta") \
    .mode("overwrite") \
    .save("/bronze/source_table")
Pattern: Incremental Load with Watermark
# Read watermark
last_watermark = spark.read.format("delta") \
    .load("/metadata/watermarks") \
    .filter(col("table") == "orders") \
    .select("last_modified") \
    .first()[0]

# Incremental extraction
incremental_df = spark.read \
    .format("jdbc") \
    .option("url", jdbc_url) \
    .option("query", f"""
        SELECT * FROM orders
        WHERE modified_date > '{last_watermark}'
    """) \
    .load()

# Merge into Delta table
delta_table = DeltaTable.forPath(spark, "/bronze/orders")
delta_table.alias("target").merge(
    incremental_df.alias("source"),
    "target.order_id = source.order_id"
).whenMatchedUpdateAll().whenNotMatchedInsertAll().execute()

# Update watermark
spark.createDataFrame([("orders", current_timestamp())], ["table", "last_modified"]) \
    .write.format("delta").mode("append").save("/metadata/watermarks")
4.2 Streaming Ingestion
Streaming ingestion processes data continuously as it arrives, enabling near real-time analytics and low-latency data pipelines.
Pattern: Kafka Streaming
# Read from Kafka
kafka_df = spark.readStream \
    .format("kafka") \
    .option("kafka.bootstrap.servers", "broker:9092") \
    .option("subscribe", "events") \
    .option("startingOffsets", "earliest") \
    .option("maxOffsetsPerTrigger", 100000) \
    .load()

# Parse JSON payload
from pyspark.sql.functions import from_json, col
from pyspark.sql.types import StructType, StringType, TimestampType

schema = StructType() \
    .add("event_id", StringType()) \
    .add("event_type", StringType()) \
    .add("timestamp", TimestampType()) \
    .add("payload", StringType())

parsed_df = kafka_df \
    .select(from_json(col("value").cast("string"), schema).alias("data")) \
    .select("data.*")

# Write to Bronze
parsed_df.writeStream \
    .format("delta") \
    .option("checkpointLocation", "/checkpoints/kafka_events") \
    .trigger(processingTime="1 minute") \
    .start("/bronze/events")
Pattern: Auto Loader with File Notifications
# Configure Auto Loader with event-driven ingestion
auto_loader_df = spark.readStream \
    .format("cloudFiles") \
    .option("cloudFiles.format", "parquet") \
    .option("cloudFiles.useNotifications", "true") \
    .option("cloudFiles.schemaLocation", "/schema/events") \
    .option("cloudFiles.schemaEvolutionMode", "addNewColumns") \
    .load("s3://bucket/landing/events/")

auto_loader_df.writeStream \
    .format("delta") \
    .option("checkpointLocation", "/checkpoints/auto_loader_events") \
    .option("mergeSchema", "true") \
    .trigger(availableNow=True) \
    .start("/bronze/events")
4.3 Change Data Capture (CDC)
CDC captures changes from source systems and applies them to Delta tables, maintaining synchronization between operational and analytical systems.
Pattern: CDC with MERGE
# Read CDC records (insert, update, delete operations)
cdc_df = spark.read.format("delta").load("/staging/cdc_records")

# Apply CDC changes using MERGE
delta_table = DeltaTable.forPath(spark, "/bronze/customers")

delta_table.alias("target").merge(
    cdc_df.alias("source"),
    "target.customer_id = source.customer_id"
).whenMatchedDelete(
    condition = "source.operation = 'DELETE'"
).whenMatchedUpdate(
    condition = "source.operation = 'UPDATE'",
    set = {
        "name": "source.name",
        "email": "source.email",
        "updated_at": "source.timestamp"
    }
).whenNotMatchedInsert(
    condition = "source.operation = 'INSERT'",
    values = {
        "customer_id": "source.customer_id",
        "name": "source.name",
        "email": "source.email",
        "created_at": "source.timestamp",
        "updated_at": "source.timestamp"
    }
).execute()
5. Storage Layer Optimization
5.1 File Compaction and Optimization
Delta Lake tables can accumulate many small files over time, degrading read performance. Regular compaction combines small files into larger, optimized files.
OPTIMIZE Command
# Basic optimization
spark.sql("OPTIMIZE delta.`/silver/sales`")

# Optimize specific partitions
spark.sql("OPTIMIZE delta.`/silver/sales` WHERE order_date >= '2024-01-01'")

# Optimize with Z-ordering for common filter columns
spark.sql("OPTIMIZE delta.`/silver/sales` ZORDER BY (customer_id, product_id)")
Auto Optimization
# Enable auto optimization at table level
spark.sql("""
    ALTER TABLE silver.sales SET TBLPROPERTIES (
        delta.autoOptimize.optimizeWrite = true,
        delta.autoOptimize.autoCompact = true
    )
""")

# Enable globally
spark.conf.set("spark.databricks.delta.optimizeWrite.enabled", "true")
spark.conf.set("spark.databricks.delta.autoCompact.enabled", "true")
5.2 Z-Ordering and Data Skipping
Z-ordering co-locates related data in the same files, improving data skipping efficiency for filtered queries.
Z-Order Strategy
	Use Case
	Recommended Z-Order Columns

	Time-series queries
	date, entity_id

	Customer analytics
	customer_id, date

	Product analytics
	product_id, region

	Geographic queries
	region, country



# Z-order by frequently filtered columns
spark.sql("""
    OPTIMIZE silver.transactions
    ZORDER BY (account_id, transaction_date)
""")

# Verify data skipping statistics
spark.sql("DESCRIBE DETAIL silver.transactions").select("numFiles", "sizeInBytes").show()
5.3 Partitioning Strategies
Effective partitioning balances query performance with file management overhead.
Partitioning Best Practices
	Scenario
	Recommendation

	Table size < 1 TB
	Consider no partitioning

	Queries filter on date
	Partition by date

	High cardinality column
	Avoid partitioning, use Z-order

	Low cardinality (< 50 values)
	Good partition candidate

	Mixed query patterns
	Partition by most common filter



# Create partitioned table
spark.sql("""
    CREATE TABLE silver.events (
        event_id STRING,
        event_type STRING,
        timestamp TIMESTAMP,
        payload STRING
    )
    USING DELTA
    PARTITIONED BY (event_date DATE)
    LOCATION '/silver/events'
""")

# Partition pruning happens automatically
spark.sql("""
    SELECT * FROM silver.events
    WHERE event_date = '2024-01-15'  -- Only reads relevant partition
""")
5.4 Vacuum and Data Retention
VACUUM removes old data files no longer referenced by the Delta table, freeing storage space.
# Remove files older than 7 days (default retention)
spark.sql("VACUUM silver.sales")

# Remove files older than 24 hours (requires safety check disable)
spark.conf.set("spark.databricks.delta.retentionDurationCheck.enabled", "false")
spark.sql("VACUUM silver.sales RETAIN 24 HOURS")

# Dry run to preview files to be deleted
spark.sql("VACUUM silver.sales DRY RUN")
Retention Configuration
# Set table-level retention
spark.sql("""
    ALTER TABLE silver.sales SET TBLPROPERTIES (
        delta.deletedFileRetentionDuration = 'interval 7 days',
        delta.logRetentionDuration = 'interval 30 days'
    )
""")
6. Compute Architecture
6.1 Cluster Types and Use Cases
Databricks offers different cluster types optimized for specific workloads:
	Cluster Type
	Use Case
	Characteristics

	All-Purpose
	Development, exploration
	Interactive, shared

	Job Clusters
	Production workloads
	Ephemeral, cost-efficient

	SQL Warehouses
	BI queries, SQL analytics
	Serverless option available

	Pools
	Rapid cluster startup
	Pre-warmed instances



6.2 Photon Engine
Photon is Databricks' vectorized query engine that provides significant performance improvements for SQL and DataFrame workloads.
Enabling Photon
# Enable Photon at cluster level
# Set in cluster configuration: spark.databricks.photon.enabled true

# Verify Photon is active
spark.conf.get("spark.databricks.photon.enabled")
Photon Performance Benefits
	Workload Type
	Typical Improvement

	Aggregations
	2-8x faster

	Joins
	2-5x faster

	File I/O
	2-3x faster

	String operations
	3-10x faster



6.3 Serverless Compute
Serverless compute eliminates cluster management overhead and provides instant startup times.
Serverless SQL Warehouses
-- Create serverless SQL warehouse (via UI or API)
-- Queries automatically scale based on demand
SELECT
    region,
    SUM(revenue) as total_revenue
FROM gold.sales_summary
GROUP BY region
Serverless Jobs
# Configure job for serverless compute
# In job definition, select "Serverless" as compute type
# No cluster configuration needed
7. Integration Patterns
7.1 External System Connectivity
JDBC/ODBC Connections
# Read from external database
jdbc_df = spark.read \
    .format("jdbc") \
    .option("url", "jdbc:postgresql://host:5432/db") \
    .option("dbtable", "schema.table") \
    .option("user", dbutils.secrets.get("scope", "user")) \
    .option("password", dbutils.secrets.get("scope", "password")) \
    .option("fetchsize", "10000") \
    .load()
REST API Integration
import requests
from pyspark.sql.functions import explode

# Fetch data from REST API
def fetch_api_data(endpoint, params):
    response = requests.get(
        endpoint,
        params=params,
        headers={"Authorization": f"Bearer {api_token}"}
    )
    return response.json()

# Convert to DataFrame
api_data = fetch_api_data("https://api.example.com/data", {"date": "2024-01-15"})
df = spark.createDataFrame(api_data["records"])
7.2 BI Tool Integration
Databricks integrates with major BI tools through native connectors and JDBC/ODBC drivers.
	BI Tool
	Connection Method
	Recommended Compute

	Power BI
	Native connector
	SQL Warehouse

	Tableau
	JDBC driver
	SQL Warehouse

	Looker
	JDBC driver
	SQL Warehouse

	Qlik
	ODBC driver
	SQL Warehouse



Partner Connect Configuration
-- Create dedicated SQL warehouse for BI
-- Configure access through Partner Connect
-- Tables appear automatically in BI tool catalog
7.3 ML Platform Integration
# MLflow integration
import mlflow
from mlflow.tracking import MlflowClient

# Log model to MLflow
with mlflow.start_run():
    mlflow.log_param("algorithm", "xgboost")
    mlflow.log_metric("accuracy", 0.95)
    mlflow.sklearn.log_model(model, "model")

# Feature Store integration
from databricks.feature_store import FeatureStoreClient

fs = FeatureStoreClient()

# Create feature table
fs.create_table(
    name="features.customer_features",
    primary_keys=["customer_id"],
    df=feature_df,
    description="Customer demographic and behavioral features"
)
8. Security Architecture
8.1 Data Security Model
The Lakehouse security model provides multiple layers of protection:
Network Security
Private Link connectivity
IP access lists
VNet injection
Network security groups
Identity and Access
Azure AD / AWS IAM integration
SCIM provisioning
SSO authentication
Service principals for automation
Data Protection
Encryption at rest (platform managed or customer managed keys)
Encryption in transit (TLS 1.2+)
Column-level encryption for sensitive data
Data masking functions
8.2 Access Control Patterns
-- Grant table access
GRANT SELECT ON TABLE silver.sales TO `data_analysts`;
GRANT ALL PRIVILEGES ON TABLE gold.sales_summary TO `data_engineers`;

-- Grant schema access
GRANT USAGE ON SCHEMA silver TO `data_analysts`;
GRANT CREATE TABLE ON SCHEMA silver TO `data_engineers`;

-- Row-level security with dynamic views
CREATE VIEW secure_sales AS
SELECT * FROM silver.sales
WHERE region = current_user_region();

-- Column masking
CREATE FUNCTION mask_email(email STRING)
RETURNS STRING
RETURN CONCAT(LEFT(email, 2), '***@***', RIGHT(email, 4));
9. Monitoring and Observability
9.1 System Metrics
# Query system tables for monitoring
spark.sql("""
    SELECT
        date_trunc('hour', usage_date) as hour,
        sku_name,
        SUM(usage_quantity) as dbus_consumed
    FROM system.billing.usage
    WHERE usage_date >= current_date() - INTERVAL 7 DAYS
    GROUP BY 1, 2
    ORDER BY 1 DESC
""")
9.2 Data Quality Monitoring
# Define expectations with Delta Live Tables
import dlt

@dlt.expect_or_drop("valid_order_id", "order_id IS NOT NULL")
@dlt.expect_or_fail("positive_amount", "amount > 0")
@dlt.expect("valid_date", "order_date <= current_date()")
@dlt.table
def silver_orders():
    return spark.read.format("delta").load("/bronze/orders")
10. Best Practices Summary
10.1 Architecture Recommendations
	Area
	Recommendation

	Data Organization
	Use medallion architecture (Bronze/Silver/Gold)

	File Format
	Delta Lake for all analytical tables

	Partitioning
	Partition large tables by low-cardinality columns

	Optimization
	Enable auto-optimize and scheduled VACUUM

	Security
	Implement Unity Catalog for governance

	Compute
	Use appropriate cluster types per workload



10.2 Performance Guidelines
	Guideline
	Details

	File Size
	Target 128MB - 1GB per file

	Partition Size
	Target 1GB per partition

	Z-Order
	Use for high-cardinality filter columns

	Caching
	Cache frequently accessed tables

	Broadcast
	Broadcast small dimension tables



10.3 Operational Excellence
Implement CI/CD for all production pipelines
Use job clusters for production workloads
Enable audit logging for compliance
Monitor costs with system tables
Document data lineage and ownership
Appendix A: Reference Architecture Diagrams
Lakehouse Reference Architecture
┌─────────────────────────────────────────────────────────────────────────┐
│                         DATABRICKS LAKEHOUSE                            │
├─────────────────────────────────────────────────────────────────────────┤
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐    │
│  │  Data       │  │  Data       │  │  ML         │  │  BI         │    │
│  │  Engineering│  │  Science    │  │  Platform   │  │  Analytics  │    │
│  └─────────────┘  └─────────────┘  └─────────────┘  └─────────────┘    │
├─────────────────────────────────────────────────────────────────────────┤
│                         UNITY CATALOG                                   │
│           (Governance, Security, Data Discovery)                        │
├─────────────────────────────────────────────────────────────────────────┤
│                          DELTA LAKE                                     │
│    ┌───────────┐      ┌───────────┐      ┌───────────┐                 │
│    │  BRONZE   │  →   │  SILVER   │  →   │   GOLD    │                 │
│    │  (Raw)    │      │ (Cleaned) │      │(Curated)  │                 │
│    └───────────┘      └───────────┘      └───────────┘                 │
├─────────────────────────────────────────────────────────────────────────┤
│                      CLOUD OBJECT STORAGE                               │
│              (S3 / ADLS / GCS)                                         │
└─────────────────────────────────────────────────────────────────────────┘
Appendix B: Glossary
	Term
	Definition

	ACID
	Atomicity, Consistency, Isolation, Durability

	Bronze Layer
	Raw data ingestion layer

	CDC
	Change Data Capture

	Delta Lake
	Open-source storage layer with ACID transactions

	Gold Layer
	Business-level aggregations

	Lakehouse
	Unified architecture combining lake and warehouse

	Medallion
	Bronze/Silver/Gold data organization pattern

	Photon
	Databricks vectorized query engine

	Silver Layer
	Cleaned and conformed data

	Unity Catalog
	Databricks governance solution

	Z-Order
	Data clustering for query optimization
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